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\ ABSTRACT

~ his fina l report covers the theoretical development of and experimental
results for the stress analysis and strength characterization of thick
composite laminates . Thick composite lam i nates (consisting of 38 plies
or more) are be i ng eva l uated for use in future high performance
anti-ballistic missiles and other aerospace applications. The theoretica l
development Inc l udes the derivation of a high-order theory of plate
deformation which accounts for the effects of transverse shear deformation ,
transverse norma l strain , and.a non-linear distribution of the in—plane
displacements with respect to the thickness coord i nates. The theory is
developed for both homogeneous and laminated plates.and ~s- -Dr.asnted
rsE.p.~rIvA Iy in Ch~pt~ r.s .1 and -2 . CJj pt~ r 1 presents !urther examination
of this high-order plate tMjory via stress solutions w~Ich have been carriedout to assess Its accurac’~4~ This theory , in effect , enables close
estimation of three-dimensiona l stress components from essentially
two—dimensiona l anal ysis .

The effects of the three-dimensional state of stress on the strength of a
thick laminates are anal ysed with a 3-0 failure criterion . -tPft1~epter 4,tensor polynomial method is extended with full account given to
trcree-dimens iona) stress state effects and is presented together with
experiment and evaluation of the coefficients. .~~fl~ comb i ned theoretica l
development of thick—plate analysis and three—’d~mensional faflure criterionis expected to improve confidence and full utilization of composites in
applications where the thickness of the laminates prevents them from being
adequately treated by current thin-plate formulations.
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SUMMARY

Th is f i nal repor t covers the theor .tica l development of and

experimental resul ts  for the stress analysis and strength characterization

of thick compos i te  iamlnates . Thick compos ite laminates (consist ing

of 38 p Iles or more) are being evaluated for use in future high

performance anti-ballistic m i ssi l es and othe r aerospace applic ations .

• The theoretical dev.iopment inc ludes th. derivation of a hi gh-order

theory of plate deformation whi ch accounts for the effects of transverse

shear deformation , transverse norma l stra in , and a non-linear

distribution of the n-plan, displacements with respect to the

thickness coord i nates . Th. theory Is develop ed for both homogeneous

and lam inated plates and is pre sented respective l y in Chapters 1 and

~~~. Chapter 3 presents further exam ina ti on of this high—order plate

theory via stress solution s which have been carried out to assess

its acc uracy . This theory , in  effect , enab l es close estimation of

three-dimensiona l stress components from essentiall y two-dimensiona l

anal y s is .

The effec t s of the three-dimensiona l state of stress on the

s trength of a th ick laminates are analysed w i th a 3-0 failure

c riterion . In Chapter k , the tensor polynomial method is extended

- w i th  f u ll acco unt g ive n to thre.-dim.nsiona l s t ress s t a te effects and

Is presented together with experiment and eva l uation of the

coefficien ts. The combined theoretica l deve l opmen t of thick-pla te

anal ysis and three-dimensiona l failure criterion is expected to

i mprov. confiden ce and full ut i lizat i on of composites In applications

~~0

_____  —5-- -- —5--- — — - - - -- -------5 — - --~---S--- - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - _ 5-~~~~~~



--5 -

- 

where th. thickness of the laminates prevents them from being adequatel y

- 
treated by current thin-plat e formul ations .
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INTRODUCTION

In many structura l applications , special characterization methods

are needed to model very thick , laminated composites . These thick S

composi tes are currently be i ng eva l uated for future hi gh performance

ant iba l l is t ic  missi les and othe r aerospace applications. A rationa l

characterization mus t include 1) extendI ng current two-dimensiona l

laminated-plate theory to reflect the three—dimensiona l characteristic

of these thick plates for the purpose of accurately estimating

deflection and the three—dimensional state of stress , 2) establishing

fa i lu re  c r i te r ion  to assess the effect of the three—dimensional state S

of stress and hence of the strength of a thick laminate . In light of

these requirements , a hi gh—order plate deformation theory is derived

to remove the restriction of the plane-section-remains-plane

hypothesis In conventiona l lam i nated plate theory by allowing a

plane section to assume third-order displacement modes. This theory

is fully deve l oped for homogeneous and laminated plates and is

presented , together wi th stress solutions , in chapters 1 , 2 and 3.

In order to present the theory in complete and concise form the

theories and stress solution are presented in the format of self-

contained chapters . Finall y the effects of a three-dimensional state

of stress on the strength of the thick laminates are assessed with

a three-dimensional tensor polynomial failure criter io~ in chapter 4.

These four chapters together prov i de the necessary tools for the

stress ana l ysis and strength characterization of thick laminates

compos i tes. Thesn tools should enhance a more complete and confident

utilization of compos i tes In the form of thick laminates .

3
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Chapter 1

A HIGH ORDER THEORY OF PLAT E DEFORMAT ION

Homogeneous Plates

K. H. Lo, R. M. Christensen , and E. M. Wu

4
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ABSTRACT
S 

A theory of plate deformation is derived which accounts for the

ef fects  of transverse shear deformation , transverse norma l strain ,

and a nonlinea r d ist ributi~~’ of the in—p lane d isplacements w i th  respect

to the thickness coord i~,ate. The theory is compared wi th lower order

plate theories through application to a particular prob l em Involv ing

a plate acted upon by a sinusoid al surface pressure. Compar i son is

also made wi th  the exact e l a s t i c i t y  solution of this prob lem . It is

found that when the rat io of the character is t ic  length of the load

pattern to the plate thickness is of the order of un ity, l ower order

theories are inadeouate and the present high order theory is requ i red

to give meaningfu l resu l ts.  The present work t reats homogeneous

plates wh i le  Chapter II invo lves laminated p lates .

INTRO DUCT ION

The developmen t and applica tion of classical plate theory is one

of the achievements of modern eng i neering . It is continuously being

applied to new prob l ems to gain new and needed des i gn information .

Des pit e it s successes , however , the i nherent limitations of the classical

theory necess i tate the development of more refined and higher order

theories of plate behavior . More sophisticated models of plate behavior

find appl i cation to problems where classica l plate theory i s s i mpl y

i . inadequate to describe the behavior. Such examples concern plate with

cutouts , contac t problems Invo lving p’ates , and laminated plates . The

- 
S S 

presen t work cor’cerns the derivation and eva l uation of a particular high

order theory of p la te behav i or .

L
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Before describing the presen t theory , it is necessary to br ie f ly

review the recent developments in the generalizat i on of classica l

plate theory. Reissner (1 ,2] was the first to provide a consisten t

theory wh i ch i ncorporates the effect of shear deformation. The derivation

g i ven by Re i ssner resul ti ng In d i sp lacements of the for m

u _ u O
+z*x

(1)

w

where z is the coord i nate norma l to the middle plane , and u°, v°,

~~ 
P , and w° have a dependence upon the in-plane coordinates x and y,

and 
~~~~~, P~,, and w° are ac tua l l y we ig h ted ave rages. The bas i c

assumption used by Reissner involved consistent forms for the stress

S 
distributions across the thickness. A special variationa l theorem was

used to determine both the equations of equilibrium in terms of

resultants and the stress-strain relations in the form involving

resultants and the functions in (1). At the same leve l of approximation ,

Mindl i n (31 employed kinematic assumptions of the form of (I), and

wi thout introduc i ng corresponding stress distribution assumptions ,

obtained the governing equations from a direct method . In Mm dl in ’s

derivation it was necessary to introduce a correction factor into

the shear stress resultants to account for the fact that relations (1)

predict a uniform shear stress through the thickness of the plate ,

which i s incorrec t and i n genera l would v iola te surface cond it ions.

L The correction factor was eva l uated by comparison with an exact

elasticity solution . It is useful to observe that the form (1) app l i e s

6
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S to both the classica l theory of plate bend i ng as well as to the

theories of Reissner and Mindlin wh i ch include the effect of transverse

shea r deformation . Thus , cons idering the terms in (1) as the f i rs t

terms in a power series expansion in z, i t i s seen that the class i cal

theory and the shear deformation theory are of the same order of

approx imation . The c lassica l theory is merely a special case of the

shear deformation theory , where i n the shear modulus i n terms associa ted

with the transverse shear deformation is taken to be very large ,

such that transverse shear deformation can be neg l ected .

There have been severa l theories proposed which are of higher order

than those of Reissner and Mind l in . Ty pi cal effor ts along these l in es

w i l l  be mentioned here. The next higher order theory from that

embod i ed in (1) i nvo l ves displacement forms of type

u u ° +z*

v — v ° + zi4 (2)

w w° + z~ + z2~~

wh i ch inv l udes the effect of transverse norma l strair~. Displacement

assumptions of the form of (2) along with corresponding stress

d i s tribut ion assump ti ons have been used by Naghd i (41 to deriv e a

general theory of shells , and by Essenburg (5] to derive the correspond i ng

one-d imensional plate theory. In the context of contact problem s,

- Essenburg [5] demonstrated the utility and advantages of the theory

based upon (2) over lower order theories . Wh i tney and Sun (6] also

utilized assumpt i ons of the l eve l of (2) to develop a theory of

lam i an ted cylindrical shells. However, there is an i nconsistency in

7
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their approach. They used a shear correction factor of the same type

as that employed by Min dl in in deriving Stress resultants. Whereas

a factor of this typ, was appropriate to Mm di in ’s derivation since it

assumed un i form sheer stresses across the thickness , the same type of

correction factor is not appropriate for use wIth the displacements of

the form of (2). This is because non—un i form shear stresses are

implied by (2) along with consequent satisfaction of top and bottom

boundary cond itions of shear tractions; thus the rationale for a

correction fac tor Is obviated.

The next hi gher leve l theory is based upon the assumed displacemen t

forms

v — v° + zip + z 2
~ (3)

A theory derived from (3) has been given by Ne l son and Lorch [7] for

application to laminates . This theory however has the same defect

in application as that mentioned above In connectIon with Ref. [6) ;

namely, a shear correction factor was employed when in fact It is

I nconsisten t with the leve l of approximation In (3). Hlldebrand ,

Reissner and Thomas [8] brIefly exam i ned a theory of the leve l of

(3) and concl uded that the inclusion of the quadratratic terms in the

n-plane displacements does not provide a significant advantage over

the lower level theory.

Relssner (9] has presented a theory which to a consistent degree

of approximation gives

8
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~~ +

v — Z~~y 
+ Z3

~~~ (4)

H w — w

where the last relation in (4) follows by combining relations (9) and

(11) of Ref. [9] . Reissner has shown tha t the plate theory correspond i ng

to (4) g ives very accurate results compared with the elasticity solution

for the bend i ng of a plate with a circular hole. it should be noted

that the theory based upon (L i) represents the lowest order correction

for out-of-plane deformation effects to the classica l theory embod i ed

in the firs t terms In (4) . Though these results obta i ned by Reissner

are i mpressive , a theory based upon (4) neglects the contribution of

in-plane modes of deformation ; only out-of-plane effects are considered . 
S

Such in-plane effects may be of i mportance in certain plate prob l ems ,

and this effect will be i nvestigated herein.

The theory to be presented here is appropriate to the following

dis p laceme nt forms :

u u ° + zip + z 2? + z~4

— + + + ( 5)

wo + p~ +

which Is of the same leve l as the Reissner theory correspond i ng to

(4) bu t includes both in—pl ane and out-of-plane modes of deformation .

The theory of plate behavior based upon (5) will be derived by

applica tion of the principle of stationary potential en~ rgy . The

accuracy of this theory will be assessed by direct comparison with an

exact solution from the theory of elasticity .

1..



Before turn i ng to the derivation , it Is pertinent to outline the

motivation for the present work. The primary intended application for

the presen t high order plate theory Is i n the field of laminates.

It is we l l  known that laminated plate behavior provides a par t icu larl y

critica l test of the. Bernoulli hypothesis concern i ng plane sections

remaining plane. The mismat ch In properties causes deviations from the

lowest order terms in displa cement forms (4). However, to p lace the

present work in Its proper context , it Is useful to derive It first in

the form directly suitable for application to homogeneous p la tes .

Accord ingly, the present paper , Cha pter I Is concerned w it h homogeneous

p la te behavior whi le  Chap ter II , follow i ng , Is concerned wit h the

application to lam i nates . The present work thus affords the opportun i ty

to assess the i mportance of the full form of displacements (5) compared

with the partia l form (4) for certain types of prob l ems. This same

question wil l  be further explored in the context of laminates In H
Chapter II.

Finally, i t should be mentioned that a theory of the leve l of (5) H

certainly Is of a rather complicated form , and the question arises

whether there is a practica l need for such a theory . It is a question

of the degree of accuracy required . For problems whi ch involve

rapidly fluctuating l oads with a characteristic length of the order

of the thickness , the results presented herein show tha t a theory of

the degree of sophistication of (5) is required to give meaningful

resul ts. Also , i t should be recogn i zed that the theory to be deve l oped

here is amenable to numerica l integra ti on wi th respec t to the p lanar

x,y coordina tes .

10
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THEORY -

P late theories can be developed by expand ing the displacements

S 
- in power series of the coordi nate normal to the middle plane. In

principle , theories developed by this means can be made as accurate

as des i red simp l y by Inc l ud i ng a sufficien t number of terms. In

prac t ice , however , a point of dimini shing returns is reached whereby
S 

the complexity of the resulting forms becomes too great. Here, we

seek the minimum number of terms which inc l ude the effects of

transverse shear deformation , transverse normal st ra i n, and war page

of the cross section. Thus the displacements are taken in the form

L. of (5) .

The principle of stationary potential energy is used to derive

the govern i ng equilibri um equations. It is found that

N + N  +q — O
x,x xy,y x

N + N  + q 0L y,y xy,x y

Q +0
x,x 5-y,y

& .  N + M  - Q + m  — O
x,x xy,y A X

N + 1 1  - Q + m 0 (6)
y,y xy,x y Y

R + R  - N  + m ~~~Ox x  ~~~~
‘( Z

p +p  -2R + n  — O
x,x x yy x X

p + p  -2R + n  — O
1~ 

y l, y xy,x y y

S +S - 214 + n 0  
Hx,x Y~Y Z

~x,x~~~~xy,y
_ 3 5

x~~~
tx 0

- ~ 
+~~~~ - 3 S + t  — O

- 
y,y xy,x Y Y
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where the stress resultants are def i ned by

[Nx N~ N 

~ r ’~”2 1~ 1
S I I J <~ ~

1
~x 

0y ~z 
T
~y ~xz 

tyz]dz (7)

114 14 M 14 R R I -1,12 lzJ
L X  z xy x yJ -

IP P p 1 ~
1,i2 r- z

2

i x  y x y l  1

I — — — I — J ~ 
(a~ a,,, ~~~~~~ dz (8)

LM* My TMxy j ~W2 Lz

and 
S

h/2
(Sx Sy) ~ ( dz (9)

with -

- 

(q n )  — tT
~z

(h/2)_
~
txz (_h/zfl (1 1,2/4)

(q
~ n~) — (r~2 (h/2 -r~~ (~ h/ 2) l  (t h 2 /1~]

(m L )  — tr
~2
(h/2) + r~2 (-h /2fl (h/2 h3/8]

(m~ Li,) 
— 

~~~~~~ 
+ .r

~2
(—h/2)) [h/2 h~/8] (10)

(q ii) 
~

[a
~

(h/2) . a2
(-h/2) (1 h2

/k3

in — 2 
[a (h/2) +

The resultants in terms of the displacement functions are given by

1,3
— (~+2u)hu

,
~ 

+ Xhv~~~ + Xhi~i2 + .j.
~~ 

[(X+2P)
~~~,X + xcy y 1

1,3
— Xhu ,2 + (~+2~)hv~~~ + + 

~~~~~ ~~~~~~~~~ 
+ (X+ 2ii)~~,~l

1,3
N
2 

— )hu’,
~ 

+ Xhv°~~ ~ (X+2u)hip2 
+ .

~~
. [x l

~~~
+Xc

~,~
1 (11)

1,3
— ~hIu’~~ 

+ V •
~~x] 

~ ~~11 ~ x,y + 
~y,x

1
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L Mx - [(A+2u)tp
~~ 

+ + 2AC~)

+ 
~~~~~

. [(A+2u)4~ ,~ 

+

1,314 — _ [x ip + (? +21.~)~~~~ + 2Ar
~~

)

h5 
S

+ 
~~~

. tX$,~,X + (A+2u)$~~~ ] (12)

h3 S

~~~ 
[A~P,~~ + + 2(A+2m.L)c~

]

+ 
~~~ ~~ x,x 

+ 
~~y,y1

1,3 h5
Mxy — 

12 t
~
’x ,y + ~~~ + 80 ~~x ,y + •yx 1

Px — [(X+2 ~z ) u , + Ay 0 , + A~~]

+ 
~~~

. [(x+z ~) c,~~ +

3
p — .!~. (Xu °, + (X+2Ii)v°~~ + Xip~] (13)

5

S 

+ + (X÷2i~)~~~~ ]

h3 h
— ~~ [u°~~, + v° ,,~] + 1

~~~
j . [~~~ 

+

— ((
~~

2u)4 ,,~ 
+ ~~~~~ + 2XC~ ]

+ ~~~~
. ((A+2u)

~~~ ,~ 
+ ~~~~

— 

~~~~ 
+ (A+2~ )ipy y  + 2A~2) (14)

1,7
+ i;i ~ ~~~~~ 

+ (x+2ii)4~~~]

1’ 

Nxy 
— fr ~~~~ 

+ 
~
‘y x 1 + 

~~~~~~~~ ~~x ,y + 
~y x 1

13
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1,3
— mih [ip +

~ 
w °,~ J + !L~..... (3Ct)x +

(15)
— ph[ip~, + W ’~~y

] + ~~~~~ +

R - (2~ +

3 (16)
— ~~~ [2C~, + 

~~~~y
]

and

s 
~~ 

+ w°, ]  + + cz,x1

s~ - + w°,~ ] + (3~~ + 

~~~~ 

(17)

where A and u are the Lame constants.

F i n a l l y , the boundary conditions along the edge of the plate

require that one member of each of the following eleven products must

be presecribed:

N u’
11
, 
~~~ ~~~ 

N
~

TM
nt ~t’ ~n S1’ ~nt ~t

~ •n, 
t1nt t~

R~~*2 and S~~C2

where n and t are the directions norma l and tangential to the edge

of the plate.
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When expressed in terms of displacements , relations (6) comprise

a set of eleven coupled second order par tial differential ‘~uatIons H

which govern the behavior of the presont plate theory.

EVALUAT I ON OF PLATE THEORIES

An approximate theory can be criticall y assessed i n comparison

with an exact result. Fortunately, there are exact solutions available

from the theory of elasticity which are suitable for the present

purposes. The solution of use here is that of the deformation of an

infinite plate of thickness h subjected to a pressure on the top

surface z — h/2 of the form

lix
q q ~~~ 5-r. (18)

with all other surface tractions van i shing identIcally. From

equations (1) it follow s that

( 1 9)

with

h lixm~~~~~q0 sin ~~~

h2 lix—r q0 sin -r (20)

The equations of equilibrium (6) take the following special forms

for this prob lem
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1,3mthL~~~ + w’~,~~] + 
~~
jj . + Cz,xx] + q — o

3 5 S

~~T 
t(A+2u)*

~~~ 
+ 2Ac1~~

] + 
~~~

. E(A+21z)
~~~~~

]

1,3
+ w ,

~
] - IL. + — o

1,3
•j
~ 

((u-2X) jt,~~ + l
~
1w’,

~~ 
- 4(A+2~i)~~] (21)

1,5
+ 

~~~ 
[(3u- 2A)~,~~ + + ~ — o

5

~~ 
((X+2u)iP,~ ,~~~~ + (2A

~3 uc 2~~ 
-

+ 

~z.1;! r(x+2u)
~~,~~

) - i~4_ 1ip~ + w°,] — 0

h3
(X+2~ )hu’, + Ahip + (A+21i) r~ ~x ,xx 

—

((2~-A)r.~~ + 
~~z,xx

1 - Xhu , - (X+2~)hip2 
+ — 

(22)

- zliiCx 
+ (A-2ii)~~~~)

5
+ S~~~ 5. [(A+2~) C ]  — 0

l~
Ihv•.~~ 

(23)
v•,xx 

- ‘ii.’ cy + I~~. 
~~~~ 

0
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and

h iih 1,3
• 12 ~~~~ + 

i~~~ ~~~~ - uh*~, - —i-- •~. —

1,5 1,7 1,3 (24)

~~~~~~ ~~~~~~~~~~~~~~~~ 
9
~Y + ~~~~~ ~~~~ 

- !~r~
._ d — 0

~~
• 

k

Note that the equations partially decouple such that the equation

group i ng In each of the above number Sets are individuall y determinate.

Obviousl y, the solution for the generalized displacement functions

i nvolve terms proportional to sin lTx/L and cos 1Tx/L. Making the

appropriate assumptions of this type, rela tions (21) - (24) can be

solved analytically in closed form.

The completed solution can be used to eva l uate the disp lacements

and stress for comparison purposes. The mid-plane displacement is

given by

w S 
- ~~ 4.{33600 (1-v)(l-Zv) + [7200- 1 692O~ + 5520v2] ~2 (!~)

2

+ l 4Ov(l-v)1t4 (
~

) ~ - (l-v)2ii 6 
(fl

6}sin L (25)

/{4
(1~v) [8400 (l-2v) + 120 (i v)~

2 
(h)

2 
+ ( l~v) 2~

4 
(
~

)
4
] }

I 
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The solution for the stress componen t a is gi ven by

f 15 ( l — ~.~)
2’n 2 (h/I) 2 (12 (z/h) 2— l La — q

0
11720 (l-l’v ) + 24 (l— ~ )iT2 (h/I) 2 

+ (3_ v) 2
~T~ (h/L)4}

+[~ . (
~
.) ~. (33600 (l-2v) — 120 (l—v) (l0—7v ) 

~~

- 80 (1_v)21r4 (
~~

)
4 
] (26)

+ l2 (l-v) (
~
) ~ (2300 (2-v) + 280 (1-v)~

2 
(h) 

2 3 ] } sin

/116800 (l-2~i) + 240 (1-v) (h)
2 

+ 2 (1 v)211
h1 (
~
) 4 ]

These results are to be compared w it h the exac t solut ion , taken from

Little [10]. Other lower order approximate theories also wi l l be compared

wi th the present results. First , the classica l theory result is noted to be

wO 
— sin (i~~.) (27 ) 

- 

5

The shear deformation Reissner plate theory produces the result

q 
~ ~ 

if
2 

(2—v) (h \
2 1 ~~ 

!.~. (28)W 
~~~ II ~~~~~~ (i-i) ~ I. ) j  L
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Essenburg ’s theory gives

• 
q0 ~~ 1~ . j~-v) (h\2~~~~ ~,2 (h 

2
w — .—

~
. 

~~~~ L 
-

~~~~~ (l~~) \4 t)  o (l-~ ) ~ L

2 4 4 (29) 
—

+ 
%~Sif
2

(h) - 1120 (
~

) ~ !.~

Finally, for comparison , the present theory with — — ~x 4
~
y —

in (5) has been evaluated and will be referred to as the “Leve l (2) Theory”,

consisten t with equations (2). This solution is

• L~ I 

- 

2012 f 1,\
2

w — 
~~~ il + 

(l-v) (120 + (l_ ~)ii.2 (h/L)2) ~~~

- 1 [4v2ir~ ~~~ 
2 

+ 2Ovir2 
~~~ 

2 

(304 ( l— ~ ) [120 + ( 1—
~)~

2 (tilL) 2] ~ L j ~
L j

- 

. 

+ ~~~~~ (
~
.)

4 
]] sin

For the stress component a , the c lass ica l , the shear de formation
Reissner , the Essenburg , and the Leve l (2) theories all give the same

results ,

12 %(L)
2 

~ Sin 
(31)
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DISCUSSION

Through compar i son wi th  an exac t solution , we seek to determ ine

the relative accuracy of the various approximate theories , i ncluding the —

one presented herein. Due to the h i g h  order of the terms included In

the present theory, i t is of course not conven i ent to use. According ly,

it would be helpfu l to deduce guidelines by which on can ascertain

~‘,hen It is necessary to use a hi gh order theory , as given here , and

when a lower order theory will suffice.

The range of theories to be considered are f rom the c lass ica l

case to the presen t form. In between these extremes, the well-known

Re issner shear deformation theory will be considered along with the

extension of it by Essenburg to inc l ude transverse normal strain

effects. Essenburg ’s theory employs assumpt i ons upon both stresses

and displacements. The Level (2) theory referred to in the previous

section uses exactly the same assumuption s upon displacement as in

Essenburg ’s theory; however, no corresponding assumptions are made

upon the stresses . Rather , the Level (2) theory solution is obtained

as a special case of that given herein , which of course is derived

directl y from potential energy . Thus , the Essenburg theory and the

Leve l (2) theory are of the same order , but invo l ve different

derivations , and It will be of interes t to compare them directl y with

each other.

S tress d i str i buti ons ac ross the th ick ness of the p la te are

d isplayed in Figure I for h/L — i.5, where L i s the half wave leng th

of the sinusoidal load ing pattern. Thus , the ord inate , ti/L , is the

ra tio of thickness of plate to characteristic l ength of the loading

20
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pattern . The high order theory due to Reissner correspond i ng to

Level (4) Is of the same order as the present theory based upon (5),

the difference be i ng that Reissner ’s theory omits the combined effects

between in-plane and out-of-p lane deformat i on modes. Thus, the Re i ssner

Level (4) theory of necessity produces antlsyniiietric stress states - 
-

about the m iddle plane of the plate . From Fig. I it is seen that the

exact solu ti on devia tes strongl y from the anti—syninetry characteristics

just mentioned ; thus it is clea r that a theory of the type of (4)

could not come close to reproducing the exact solution. Also , it is

obv ious from Figure 1 that the Reissner Leve l (1) and the Essenburg

theories prov i de no improvemen t over the classica l theory i n terms 
S

of the accuracy of the stress representation. Considering the complex

shape of the exact solution stress distr ibut ion , the present hi gh order

theory prov ides an effect ive modeling result.

The maximum va lue of stress a (flexura l stress) Is plotted

against -h/I in Figure 2. C’early, when the ratio of the thickness to

the characteristic length of the load is of the order of 1 , the present

high order theory is needed to properl y mode l the defo rmation effects

in the plate and lower order theories are inadequate. This specif ic

conclusion of cours e appl i es only to the p resent examp le , but we

speculate that in all prob l ems where disturbing features have a

characteristic l ength of the order of the thickness , then a theory at

least of the order of the present one would be required to properly

model effects.

The maximum displacement of the middle plane of the plate accord i ng

to the various theories are compared with the exact result in Figure 3.

S 
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I t i s seen tha t for h/I. — 1 .5 the deviations between the approximate

theories and the exact result are substantial , and the dev i a t ions

continue to increase with increasing h/I. The present high order

theory is seen g iving the result closest to the exact result. The

resul ts from Essenburg ’s theory and the Level (2) theory are of about

the same leve l of accuracy as one would expect for the reasons described

above. Note also that the present high order theory Is clearly superior

to the Level (2) theory .

The main result of the present work I s  viewed as a complement to

the result found by Reissner (91 , thIs result be i ng that a theory of

the leve l of (4) or (5) is needed , in genera l , to p rovide a s i g n i f i can t

Improvemen t in the leve l of accuracy over that afforded by the classical

theory of plate deformation . Further , I t follows that with a theory

of the l evel of (4) or (5) , very accurate results can be obtained .

I t is now possible to answer the question raised in the Introduction

of whether In a given problem the coupling effects Implicit in (5) are

needed rather than using the simp l er form (4 ) .  In the examp le stud i ed

by Reissner [9] of the bend i ng of an infinite plate with a circular

hole , the results derived from a theory correspond i ng to (4) were

en ti rely satisfactory and sufficient , whereas in the present example

the theory based upon (5) Is requ i red for the reasons described above.

An examination of the governing set of differential equat i ons (6) show s

that the sets of equations govern i ng the in-plane and the out-of-plane

deformation modes completely decouple. In the problem studied by

Reissner (9], the in-plane contributions to the prob l em are easily

shown to vanish I dentically, thus a theory based upon (5) prov i des no

22
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new information over one based upon (4) in that problem. However , in

the present problem the in-plane contribu tion to the solution has been

shown to be s ig n i f i c a n t , and canno t be neg lected . Thus, it is seen

that for plate bending prob l ems where the load i ng characteristics possess

a high degree of asymmetry , with respect to the middle plane , then a

theory of the type of (5) rathe r (4) is required , while prob l ems with

load i ng characteris tics which are close to being antI-symmetrical with

respect to the middle plane then a theory of the type of (4) is

sufficient. The bend i ng of an infin Ite plate with a circular hole

Is an example of the latter type of problem , while the problem

considered herein as well as contact prob l ems , are examples of the

former type. Of course , neither type of high order theory is needed

unless the d i s tu rbing fea tu re of geomet ry or the charac ter i sti c load

length are of the order of the plate thickness.

Fi nally, I t is appropriate to mention the nature of the stress

resul tants invo l ved in the present theory. As seen from (7) - (9),

there are resul tant s of h igher  order tha n bend in g moment s and shear

force i nvo l ved in the governing differential equations . These same

highe r or de r resul tant s are also necessar i ly Involved in the

specification of edge conditions. It is log i cal to ask what i s  the

s i g n i f i c a n c e  of such h i gh order resul tan ts i n ed ge cond i ti on

spec i f ica ti ons , and is there any way to avoid involvement with them.

The answer to this question is very sImple. There is no way to avoid

consideration of these high order resultants in the present context;

i ndeed , It would be disturbing If the present high order theory did

not require the specification of correspond i ng high order resultants

23
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along edges . For trac tion-free edges , of course , the resultants of al l

orders simply vanish. For loaded edges , the distr ibution of tractions

across the thickness must be obta i ned or assumed , from which the

resul tants of all orders can be determIned .

Th. extension of the present plate theory to laminated plate

conditions is of particular importance since It Is known tha t for

laminates the distribut i on of In-plane displacem ents across the thickness

may be strongly nonlinear. This extension Is presented in Chapter ii of

this same work.
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FI GUR E CAPT I ONS

Figure 1: Fl.xural stress dis tr ibu ti~ns for v — 0.25 and h/I a 1.5.
Fi gure 2: Maximum flexura l stress distributions for v — 0.25.

Fi gure 3: Mid—plane displacement solution for v — 0.25.
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Chapter 2

A HIGH ORDER THEORY OF PLATE DEFORMAT I ON

Lam i nated Plates

K. H. Lo, R. 14. ChrIstensen , and E. 14. Wu
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ABSTRACT

The high order theory of plate deformation developed in Chapter I of

this work is extended here to model the behavior of lam i nated plates .

Through comparison with elastici ty solutions , it is shown the present

theory correctly models effects not atta Inable f rom the classical theory .

I NTRO DUCT ION

~i’~~th the increas i ng use of composite materials in thick laminated - -

for m , the need for advanced methods of anal ys i s i s obv i ous. For such

laminated systems, the components of stress and strain t ransverse to

the plane of the laminate strongly influence the behavior. Thus,

classica l lam i nated plate theory , which is not formulated to accoun t

for the effect of these transverse stress and stra in components , is not

applicable to thick laminates. A high order theory of plate behavior

is herein developed for application to laminates ; this theory is an

extens i on of that developed in Part I of this work (1], for application

to homogeneous plates .

Many d ifferent high order laminated plate theories have been

proposed which are intended to improve upon the classica l laminated

plate theory by accounting for the effects of the transverse components

of strain in the plate. Typ i ca l examples of such theories are cited

in (2-5] . The simplest of al l  the imp roved laminated theories are

the ones based on an assumed displacement field of the form

u — u (x ,y, t) + Zip
~
(x ,y,t)

v — v° (x , y t ) + Z~P ( x ,y, t)  (1)

w • w  (x ,y,t)

- - 31 
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Actually, rela tions (1) apply to both the classica l form and the

improved shear deformation theory , the difference being that in the

classical theory the tjs and IP terms are directly specified in terms

of derivatives of w. Despite the increased generality of th. shear

deformat ion theory , the related flexura l stress distributions show S

l i t t le  Improvement over those of the class ica l laminated plate theory.

It is apparent that higher order ter ms are needed in the power series

expansions of the ass umed d i sp lacement f i eld to properl y model the

behavior of the laminates .

in this paper , a consistent high order laminated p late theory Is

derived for the flexura l behavior of laminated plates . The following

d i sp lacement f ield i s ass umed:

u — u (x ,y) + 

~~ x (x ,y) + 

~~~~ 

(x ,y) + z34~ (x,y)

v — v° (x ,y) + (x ,y) + (x,y) + (x ,y) (2)

w — w° (x,y) + z~2 (x ,y) 4. z2 ç (x ,y)

The l evel of truncation In Equations (2) Is consisten t in the sense

tha t the transverse shear s t r a i n s  due to in-plane displacements u and

v are of the same order In z as those determined by the transverse

disp lacement w. This hi gh order lami nated plate theory is an extension

of the th ick p late theory developed ear l ier  for homogeneous isotropic

plates (I]. The accuracy of the theory is assessed through its

application to the problems of a bi-direct iona l and an angle-ply

laminate subjected to sinuso i da l surface load i ng.
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In  add iti on to surface loa din g p roblems, there are other classes

of prob lems of pract ical interest which require the use of a theory of

the order of the one given herein. For example , stress r isers such as

cut-outs , loaded holes and subsurface cracks, and p roblems i nvolv ing

the impact of laminates by foreign objec ts cause s tress d i str ibut ions

and localized stress grad ients through the thicknes s of the plate tha t

are essent iaii y three—dimens iona l in nature and require the application

of a high order theory .

LAMINATED PLATE THEORY

S The theory used in this pape r i s based on the ass umed d i splacement

field as given in Equations (2). The constitutive relations for any

layer of the laminate are of the form

a C C C C c
x 1]. 12 13 16 x

a C12 C22 C23 C26

~13 ~23 ~33

txy c16 C26 C36 C66 y

(3)

U rt~ ~ rC44 C451 ~~yz~
L. [txzj  [C45 ~~~~ 

[~xzj

where C 1 . are the components of the artisotropic stiffness matrix. It

- -  should be noted tha t a l l  the si x component s of stress and stra i n tenso rs

are incl uded in this theory .
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The govern i ng equation s pert i nent to this theory are derived

using the pr inciple of stationary potential energy in the same

manne r as that in Ref. (I]. Eleven equi l ibr ium equations are obtained

for the determination of the eleven generalized displacement coefficients

in Eqs. (2). The details of the derivations are omitted here; suffice

i t to say i n f u l l  form the derivation is rather lengthy. These

gover n i ng equa ti ons are recorded here, in an archive journa l , for 
S

possible future use in related prob l ems.

Govern i ng equilibrium equations of higher order plate theory are

given by

H +~~~ + q  a O  UX~~x xy ,y  x

U +N  + q  — 0
y l l y x y ,x y

~~~~~~~~~~~~~~~~~~~~~~~~~~~

It - Q  +m  ~~Ox ,x xy,y x x 
-

l~1 + K  - o  ~~m a DU y,y xy,x 
~
y y

‘4R k R - N  + m — Ox ,x y,y z

P + P  - 2 R  + n  — ox ,x X~P ,’/ x x S

P + P  — 2 R  4 n  0y,y xy,x y y
S + S  -2M + n a Ox i x y,y zII + M -3S +

~~~~~ — Ox ,x xy ,y x x
S 

~4 +14 -3S + t  — Oy,y xy ,x y y

U
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I where S

N N N N r h/2 (1~~

~~ 
H2 H R R ~~-h/2 

~~~
}
~[a a~ a2 ~~~ ~~~ 

Tyz]d

~x 
1’y ~~ r h/2 r z2 U

~x ~
y ~xy 

= 

~ -h/2 t ~ 
(a a~ Txy) dz

(5 )
and

[s~ s ]  =~:: z2 ~ ~~~ 
i )  dz 

-

are the force resultants appropriate to this theory and

~~ ‘
~x~ 

= (T (h/2)-t (-h/2) ) (I

(q~ n~) = [T~2
(h/2)—-r~2(~h~’2fl [1 h2/4] (6)~

(m = Et
~2~

5
~
’z) + ~r (— h / 2 ) ]  (h /2 h3/8)

{ 5  
(m~ L ) = [t (h/Z) + r (-h/2)] [h/2 h3/8]

(q n) = fcr (h/2)- a
~
(-h12)] (1 h2/4J 

-

m 

~ 
[o2(h/2) + a (-h/2)]  . -

~1 L
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Along the edge of the plate , one member or each of the following —

eleven p roduc ts mus t be p rescrib ed :

N
11 

u~ 1 P1
~~ 

u 1 1 H
~

~nt ~t ’ ~flS1’ ~nt  ~t

~~ 
d
~fl, 

R~~ 

5

S 
R~~~’ and 5~~~ 

.

where ii and t are the directions normal and tangential to the edge of

the plate.

The equations and boundary conditions given in ( k ) - ( 7)  are

independen t of the properties of the materials of the plate and hence

hold true for homogeneous isotropic as we l l  as laminated p la tes.

Nex t , the govern i ng equilibrium equations are expressed in terms

of the displacement coefficients.

Us ing Eqns. (2), (4), (5) and strain-disp lacement rela t ions , the

governing equilibrium equations can be written in the following form:

us

V 0 
q

W ° -q

X 
(8)

a .  
m~
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wh.re the operators L 1~~ ar e symmetric and have the fo l lowing forms

- 
2A 16 

- 
A66

- .  11 ,2 A16 A 12 + A66 A26
L1 ,4 B11 2B16 866

- 

- 

11 5  816 r , 812 + 866 826
11 7  D11 L 

~ ,xx 
+ 2016 Li~ 

+ 
066

11 8  D16 D
12 + 066 026

11 1 0  Fl1 2F16 F66

5 

11,11 F16 
— 

F12 + F66 F26

11 3  
a

- C i~ 
+

~~~
B
36] L

12 3  
— O~ 12 4  

— 11 ,5i 
1
27  

11 ,8, 
12 1 0

- — 5 

• . 1  -5

- 122 
A66 A26 

A22

12 s 866 B26 
822

1
2,8 ~~~ C 11,xx 

+ 2 D26 C 
+ D22 [ 

~~12 1 1  
— L

F66 26 22
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) I + (2D23 — D44 ) I

1
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L 1
5 1 1  
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26 I + H22 ~ 
~~~~ 

— 3D~~ ( I

L6 6 L3 9 + A 33 1 I
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18 8  - 15, 11 - D44 1 1
18 9  2(F36 F45) [ 3,, 

+ 2(F
23 

— F44) f
18,10 — L7 1 1
18,11 

— K66 ( ] ,,~ + 2K26 ~ I ,xy + K~ [ — 6F44 1 3 U

19 9 ~~ -H55 ( 1 ,xx - 21145 1 
~,xy 

— 1144 1 ~~~~ + 4033 
-

119 101 2H l3~
3H5s1[ 

~ 
[2H36 311451 [ ]

L19, lhJ 2H36_3H45J 
,x L2112c31144i

110 101 kIll 2
~~ I6 

~~66 H

110 11 — j L16 ~
[ •I[xx + 

~(.l2~~~66 [ 
~~~ 

+ 

~ 
[ 
~ -9 H4~ [

111 llJ ~~ 66j 
2J

~26 ~~22 H44

(9)

where the notation etc. refers to derivatives of the col umn matrix

of generali zed displacements shown in (8).

The coefficients A 1., ~~~ 0;y F1~~, H 1~~ 1(i j  and ~~ are defined

as follows
S r h/2 S

(A 1., 81j ’ ~~~ F1~~, H
~~

, ~~~~~~~~~~ — J (l ,z,z2,z3,z ,z5 ,z6) C4.dz

—h/I (10)
For symmetric laminates , B 1~~ F~~, and KU 

are identicall y equal to zero.

.1
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Probl ems I nvolving ang l e-ply and cross-ply laminates subjected

to static sinusoida l loadings are next used to assess the deOree of
U 

accuracy of this h i g h  order laminated plate theory .

NUMERICAL EXAMPLES

A. Ang l e-Ply Laminate

Cons i der an infinite ang le—ply laminate of thickness , ii , subjected

to a pressure on the top surface z — h/2 of the form

q — q
0 

s i n  
~~ 

(11)

with all other surface tract ions Identically equa l to zero. The problem

can be solved by assuming a solution of the form

u (a + za1 + z2a2 + z3a3
) ~os

v — (b0 + zb 1 + z2b2 + z3b
3
) cos (12)

2 ltxw — (c0 + zc1 + Z c2) s in  T
F

where the constants au b i , and c 1 are determ i ned by the satisfaction

of the govern i ng equations given in the Appendix.

Numberica l results for a three-laye r symmetric laminate are shown

j in Figures 1-4. The ply orientations and thickness are (+30° , -30°, +30’)

and (h/1e , h/2, h/li) respectively. The following properties are used for

each ply

-- U - -



E
1 25 x o6 psi E1 — 106 I~~

G11 — 0.5 x 106 psi , ~~ • 0.2 * 106 psi (13)

V11 
a ‘ITT a 0.25

where L and I are the directions parallel and norma l to the fibers ,

respectively, and V11 is the Poisson s ratio measuring transverse strain

U 
under norma l stress parallel to the fibers. These are ty pi cal va l ues

of high modulus graph i te/epoxy composites. The stress and displacement

components in F i gures 1-4 are normalized as follows

q0hS 3

-; (lie)

q
0
S S

for comparison with the exact elasticity solutions given by Pagano [7).

Fi gures 1 and 2 show the flexural Stress distributions for the

case 1/h a 10 and L/h a 4, respective ly. The agreemen t wi th exact t
elastic ity solution Is exceptionally good in the region of high values

of flexura i stresses . As the interface between different l ayers is

approached, the stresses In the +30° Is slightly differen t from th.t

given by exact elasticity solutions . However, such a slight difference j
is i mmaterial , especially at the reg i ons of low values of stresses .

Figures 3 and 4 show the correspond i ng In-plane displacement in

the x-d i rection. As In the case of flexural stresses , good agreement

with exact elasticity solution s is observed . The solution s In Figures 3

42
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and 4 revea l the necessity for modeling the nonlinear distribution

of disp lacements.

B. Bidirectiona l Laminates 
U

A more critica l test of the laminated plate theory can be obta i ned

by repeating the above problem for a symmetric bidirectional lamina te.

In this case a higher discontinu i ty in material properties is experienced

at the interface of different l ayers . Numerical results for a three—

layered (0°, 90°, 0°) bidirectIonal laminate are g i ven In Fi gures 5 and 6

for the flexural stress distributions. The material properties in each

l ayer are the same as g~ven in Eqs. (13) and the results are compared

with the exact e1ast ici~y solutions given by Pagano (8].

As in the case of angle-p ly lamina tes, close agreement of the

numerical results with exact elasticity solutions Is obtained . The

relatively large discrepancies in the va l ues of the flexura l stresses

at the interface between different layers is due to the high discontinuit y 
U

U in the va l ues of C 1 1 across the interface of different layers. However ,

as before, such discrepancies occur in the reg i ons of low va l ues of

flex ura l stresses where accurate predictions of flexural stresses are

not mportant.

DISCUSS I ON

By compar ing the results obtained with the exact elasticity

solu tions and the classica l lam inated plate solutions , i t is obvious

that the present high order laminated plate theory gives a much better

U 

U approximation to the behavior of lam i nated p la tes. This ls especiall y

1i3

-
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true in the case of re lative ly thick lamina tes where the effects of

the transverse components of stress and strain could not be neg lected .

As in Ref. [1), the presen t hi gh order theory is expected to g ive

reasonably accurate solutions for prob l ems where the characteristic S

length of the loading pattern or the dimensions of the disturbing

features, such as cut-outs, are of the order of thickness of the plate.

The lam i nate stiffness coeff ic ie nt s 
~~~ 

F1 ,  and 1(
ij’ as given

in Eq. (14) represent the coupling between the In-p l ane and out-of-plane

response of the lam i nate. In the case of symmetric laminates , it can

be seen from Eq. (lIe) that these coupling coefflcinets are identically

equal to zero. Thus, for syn~netric laminates , the govern i ng eleven

equilibrium equations can be separated into a set of five second-order

d ifferential equations govern ing the in-plane displacement components

of the laminate as given by

u — u° (x ,y) + z2i
~ (,“~~)

v — v° (x ,y) + z2C (x ,) (15)

w — zi~ (x,y)

and a set of six second order differential equations governing the

flexural displacement componen ts as g iven by

— 
U — z~P~ (x ,y) + z3$ (x ,y)

V — Z*y 
(x y) + z34~ (x ,y) (16)

w a w ° (x ,y) + z2~~ (x ,y) j 
U
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For symmetric laminates subjected to load i ngs wh i ch also are

symmetrica l with respect to the middle plane of the lam i na •, Eqs. (15)

provide an approx imation to the In-plane response of the laminates ,

wi th no contribut i on coming from Eqs. (16).

Si milarly, I f  the symmetr ic lam i nate Is subjected only to

anti-symmetrica l load i ngs, Eqs. (16) provId , an approximation to the

flexura l behavior of the laminate. For loadings wh i ch are neither

symmetrica l nor anti—symmetrical , terms from both Eqs. (15) and (16)

- - will contribute to the total response of the laminate. For many

p roblem s , however , the in-plane contributions to the flexural behav i or

of symmetric laminates are smal l  except for very thick laminates . To

i l lustrate this , FIg. 7 gives the flexura l stress distribution for a

moderately thick symmetric ang le-p ly lamina te based on Eqs. (2) and

(16) for 1/h — 4. As can be seen from the figures , the two d i fferen t

stress distribution s are extremely close to each other. Based upon

U 
the results obtained in Part I , it would probably be at about 1/h — 1

where the contributions from both Eqs. (15) and (16) are comparable.

For unsymmetric laminates , the coup l i ng coeff i cien ts B~ ., F .,  and

are no t id en t i c a l l y equal to zero and , hence, the in—plane and

out-of-plane deformations are coupled with each other. The behavior

of the laminate is thus determ i ned by the solu ti on of a set of el even

coupled second order partial differential equations. Figure 8 gIves

the flexura l stress distributions for a (+30°, -30°, +30°, —30°, +30°,

-30°] unsynwnetric laminate subjected to a sinusoidal load i ng as

spec i f ied  by Eqs. (11). The corresponding solutions obta i ned by

using Eqs. (16), I.e., neg l ecting the coupling effects of the in—plane

5 45
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displacements components , are also given . From Fig. 8 It is seen that

the f lexura l stress d istributions are strongly influenced by the effec t s

of In—plane coupling . In fact , the use of only the terms in (16) l eads U

to a solution which has a continuous flexura l component of stress,

wh i ch as seen from Fig. 8, is completely erroneous. Thus , Eqs. (2)

must be used to obtain accurate stress distributions .

Final ly, it should be mentioned that the presen t results were

ob tained w i th  no recourse to shear correction factors , wh i ch are

commo n l y employed in laminated plate ana lys i s .  As discussed in Chapter I 5

of this work , it would be inconsistent to employ these factors with a

high order theory of plate deformation .
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FIGURE CAPTI ONS

Fi gure 1: F lexural  stress d i s tr i but ions for [+30° , —30°]~ ang le—p l y I
- U lam inate at 1/h — 10.0.

Figure 2: Flexura l Stres s distr ibutions for (+30° , ~ 300] angle-p l y

laminate at L/h — 4. 0.

Fi gure 3: In—plane displacement ~ for [+30°, -3— °]~ angle—ply

laminate at 1/h — 10.0.

Fi gure 4 : In-plane displacement ~ for (+30° , -30° ] ang le-pl y

laminate at 1/h — 4.0.

Fi gure 5: Flexu ra l stress distributions for (0°, 90°, 0°] cross— ply

lamiante at 1/h — 10.0.

Figur e 6: Flexu ra l stress d is t r ibut ions for (0 ° , 90° , 0°] cross-ply

lam inate at 1/h 4.0.

Fi gure 7: Compar ison of flexural stress distr ibutions due to

Eqs. (2) and (9) for (+30°, -3O °]~ ang le- ply laminate at

L/h — 4.

Fi gure 8: Comparison of f l e x u ral  st ress d i s tri buti ons due to
U Eqs. (2) and (9) for unsynTnetric (+30°, —30°, +30°, -30°,

+300 , ~ 300] angle-ply laminate at 1/h — 10.
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Chapter 3

STRESS SOLUTION DETERM I NAT I ON FOR

• HIGH ORDER PLATE THEORY

K. H. Lo, R. N. Christensen and E. N. Wu
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ABSTRACT

The high order theory of plate deformation developed in

References (1] and (2] is further examined herein. Specifically, - S

stress solutions are given and evaluated against exact elasticity

solutions under stringent short wave length l oad conditions. By the

firs t method the stresses are eva l uated directly from the resulting

• displacement solutions. In a more refined procedure , the tra nsverse

U shear stresses and the transverse norma l stress are eva lua ted by an -

al ternate equilibrium method . The latter procedure is shown to be more

accur ate than the former.

I NTRODUCTION

I t has l ong been recognized that classica l plate theory must be

mod ified to treat certain high order effects. The first comprehens i ve

genera l izat ion of the c lassica l theory was tha t given by Reissner (3].

S ince Re issner ’ s work , there have been a great many furthe r generalizat ions

beyond the classica l theory assumptions , w it h perhaps the highest order

theory to date be i ng that given by La, Chr istensen and Wu (I] and (21.

Pre l iminary steps were taken in References (I] and (2] to assess the

accuracy of the theory . In this paper this important subject is U

exam i ned in greater detail.

The theory developed in References (I] and (2] is based upon an

assumed displacemen t field of the type - ‘

U 

u — u’(x y) + z~ja (x ,y) + z2i
~~

(x,y) + z3~~
(x,y)

v — v°(x,y) + z~ii~(x~~) + z2c~ (x~v) 1; z
34~ (x~Y) 0)

w — w°(x ,y) + z’~i2(x ,y) + z2~~(x~y)

5 
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IS .

where u and v are the In-plane displacement components , w the out of

pl ane or transverse components , z the norma l coord inate , and the

rema in ing functions in (I) depend upon the In-plane coord ina te x and y.

The govern i ng theory, based upon the princip le of stationary potential

energy , resulted In eleven second order partia l differ ential equations

to determine the eleven functions in (1). It appears tha t an approach

of this type is the log ica l way to proceed If one wishes to determine 
U

only the d i s p lacements. It is less clear tha t this approach is the H

— most expeditious method if one seeks to determine stresses . Now the

comparisons with exact e las t i c i t y  results given in References (11 and

(2] were only for the in—plane stress components , the transverse shear

stresses and the transverse normal stress were not eva l uated . Therefore

the more complete stress information to be given here will help to

answer the question of the genera l accuracy of the theory. Before

proceed i ng wi th this however, i t  Is usef u l to cons i der the three

theoretica l approaches to plate and shell deve lopment, and some

advantages and disadvantages of each .

The f i rs t and most obvious approach to deriving an approximate

plate theory utiliz es assumptions upon the forms of displacements , as

i n  (1). The governing d i f ferent ia l  equations could then be derived

e ither by a direct method as in the case of classical plate theory ,

or by the use of the principle of stationary potential energy as in

- j  Reference (1]. Equilibr i um is violated by this approach, that is to

say, the equilibrium equations are only approximatel y satisfied through

weig hted averages . The second possible approach is the direct reversal

of that just described . Stress expansions in z are assumed and the
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governing dif ferential equations are der ived e it her by a d i rec t

approach or by the use of the complementary energy pr inciple.  Typ i ca l

examples of this approach include the work of Reference (4]. In this

method the equilibrium equations are sat is f ied , the stress strain

rela tions are satisfied , but the comp atibility of displacements is

violated . In the third approach , assumptions are made upon both the

stress states and the displacement forms where by both equilibrium

and compatibility conditions are satisfied . However the stress s t ra in

relations are violated. Reissner ’ s p la te  theory is the most comon

form of this type , Reference [3] .

I t is the stress state which usually is the i tem of interes t in

most problems . Accord ing ly it might seem to be most rationa l to use either

of the latter two stress type theor ies , but not the theory which depends

exc lus ive ly  upon displacement assumptions . However , such reason ing

invo lves one serious problem, name ly i t  wou ld e l i m i n a te the ex tensio n

of the theory to model laminate behavior. This consequence is

because of the fact that in lam i nates the in—plane stress components

are discontinuous and it becomes as exceedingly complex matter to

construc t a high order theory wh i ch must i nherentl y accoun t for

discont inuous stresses . However , even in laminates the displacements ,

of course , are continuous , and since a major impetus in constructing

new h i gh order t heories Is for use wi th laminates , it is herein

cons idered necessary to proceed wi th  the displacement theory of

Reference (1] . The displacement theory of Reference (1] in fact has
S 

been extended to model laminates by La , Chr istensen and Wu (2].
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This status of a f fa i r s  s t i l l  leaves us w i th  some uncertainty.

Is the displacement type theory of References (11 and (2] the bes t

means by which to deduce the stress state under conditions where

high order effects are of importance? The doub t ar ises because the

equilibrium conditions are violated by the theory wheras stresses U

possess a one to one correspondence to the equilibrium conditions.

However , there is  one poss ib le means by wh i ch the accuracy of the

stresses obtained by this displacement type theory can be improved .

The possible procedure is as follows . Use the high order theory based

upon (1) to deduce the In-plane stress components , ~~ and

Then insert these stress solutions into the equilibrium equations

and solve for the out of p l ane/transverse stress components ~~~

and 0
z by integration . Th is procedure clearly results in a stress

solution which satisfies equilibrium exact l y. The procedure is

suggested by the c lass ica l theory approach , wh ich does not d i rect ly

prov i de a solution for the transverse stress components , and they

have to be found by the method described above.

Thus, the stresses imp l icity in the high order displacement

type theory of References (1] and (2) will be determined by two

sepa rate means . First th’ in-plane and transverse stresses will be

found di rect ly  from the di splacement solution through the use of the

stra in—displacement an~ stress s t ra in  relat ions . By the second method U

the in-plane stresses wi l i  be found by the method Jus t described and

they will then be used to determine the transverse stresses by

integrating the equations of equilibrium. These two alternate methods

of deduc i ng s’ress will be compared and tested against exact elasticity

61

U - 
~~~~~~~~~~ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - ~~~~~~~~~~ _

~~•
__

~. -



r 5
~ 

~~~~~~~~~~~~~~~~~ :---5-- - -
~~~

—---!
~~~

-
~==:::~~ 

— - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

solu tions . Both cases of homogeneous plates and laminates will be

considered.

THEORETICAL CONSIDERATION S

- The assumed displacement fields are given by relations (I). The

pol ynomial expansion for w is truncated at one order lower than the

expansions for u and v such that the contributions to the transverse

shear stra i ns from u and v are of the same order in z as that from

~he terms in w. The strain—displacemen t relation s of the linea r theory

of elas t ic it y are

— + + + -

— ~~~~~ + ÷ ~~~~~~~ + (2)

£ _ * +Zz C z 
-

and S 
- - 

-

= + zl’~~, + + Z
3

y y ° +zr + z 28 (3)xz xz xz xz

~ = -y  ° +2ryz yz yz yz

with

+ v ,~; y~~
° 

~~~ 
+ w°,~

; y~~
° = +

+ 

~~ 
r,~ = 2

~x~ ~~~~~ ~~~ 
= +

+ 
~~~~~~~~ ~~~ 

34i,~ + 
~~~~~ 

8/z 34’
y 

+ Cz,y -

K = ‘P ÷~~xy x ,y y,x
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The stress strain relations appropriate to an anisotrop ic mat erial

a re g iv e n by

a C 1~ C 12 C13 C14 
C 15 

C16 ~~ 

-

o
y - C22 C23 C211 

C25 C26 
€:~

- a c33 c34 c35 
c36 c

= - 
.t
yz 

— C1414 C45 C146 •Y
~~

Sym C55 C56 Y~~

- 

C66 ~XY~

where C 1 ., i ,j — 1 , 2 , ..., 6 are the s t iffness coeff ici ents. The

deriva tion of the governing equations for this highe r order plate

theory is given in Reference (1] for homogeneous i sotropic plates ,

and its extens i on to lam i nated p late conditions is g i ven in

Reference (1+]. The eva l uation of the stresses will now be given by

the two methods mentioned in the introduction .

STRESS EVALUAT I ON, HOMOGENEOUS PLATE

An Infini te homogeneous isotrop ic plat e is subjected to sinusoidal

load ings as In Reference [I]. The prescribed surface tranctions are

a
~

(h/2) — q0s i n  (~~~ ); a~ (-h/2) - 0 (6) H

and

txz (~~ h/2) - Tyz (~~ h/2) - 0

where h ~s the plate thickness.
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The solutions to the plate prob lems are [11 ,

u — [A + aA 1 + z2A2 + z3A
3] cos (~~~) 

-

V~~~~ O (8)
w — [C 1 + zC2 + z2C3] sin (!~.)

where the constants A0, A 1, A2, A3 and C 1, C2, and C3 are obta ined by

satisfaction of the governing differential equations and boundary

conditions . From (3), (4) and (5) the transverse stress components

appropriate to a homogeneous isotropic plate are

— A(u°,,~ + v°1~ ) + (A + 2ii) *~
+ z[A(qi +~~ ) + 2(A + 2p)~ ] (

~
)

+ + ~~~~~ + z’A($~~ 

~Z

44y,y)

and

+ w , )  + zU(2
~~ 

+ 
~~~~~ 

+ z2
~(3$~ +

— l1(~Ii~ + w°1~) + zP (2~~ + + z2l.1(3$~ + 
~~~~ 

(10)

Substituting (8) into (9) and (10) gives th. transverse stress
components for th. infinite plate

a
~ 

+ ~~~~~~~~~~ + z t-x~ ~ + 2 (x+2~)c31U 
— z2AA2 ~.—z

3AA
3 ~}s1n ~~~ (li)

and

~~+z p  (2A 2 + C
2 

~~II1I 1111 I~~~~~~~~
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1!
These stresses are of course those deduced directly from the theory , and

they will be displayed graph i cally for particu lar values of h/L , I.e.

the ratio of the thickness of the plate to the characteristIc length of

the l oad i ng pattern . First of all , however, these same stress components

will  be eva l uated by the alternate method mentioned in the introduction .

The in- plane stress components for the problem under consideration

are given in Reference (1]. These in-plane stresses are substituted into

the equilibrium equations

- 

a1j ,j = O  
- 

(13)

to yield , after integration , the out of p lane/transverse stress

compon.nts: -

S

+ 

~~ 

- (X÷2~) A2 

~~ 2
- + .

~~~ 
[
~

_ 
- ~_ ] [ (X +z~) A 1 ~~~ - 2XC

3 
!iJ

L. 
+

~~ 
[4 _

~~~~]~
x+zu)A34}sin ~! (1k)

and

— {~ [(A÷2U)A0 !~. -A 
~2

L 
+~~[~

2 
- 

~
.] [(x+~i)~ 1 

!
i

_ 2XC
3~~]

+ (A÷2U)A 2 
!~. + 

~~~ ~ - (A+2ii)A
3 

1~~ cos (~~
) ( 1 5)
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where the top and bottom surface traction condition s (6) and (7) have 
U

been used to eva l uate the constants of integration .

The correspond i ng exact elasticity solution for this problem is

given in Reference [5], among many other sources. Before comparing

the two alternate means of deriving the stresses , first the correspond i ng

results for a part i cular laminated plate will be stated.

LAM INATED PLATE

The lamina te to be considered is that of symmetric cross-ply

geometry with each lam i na bei ng orthotropic. Usi ng relations (5),

(8) , and (13), the transverse stress components are found to be

- 

~~~
(k) [~ 

[_c11
k A04+ C l3~~~C2 ~] 

- 
U 

F[-C11~~~
A1 ~~ + 2C13

C
3

~~~~~ [c 11
0~

)A24] 4. [C~l~~~A34]}
cos (1 )

+ f~~~(x) (16)

and

~~
(k) 

f
~ .[cii

k Ao4 
_c

13
(k)C24] +

!~. [c11
(1c)A 1 
!
~

2C (k)c -
~
2
~1 + c (k)A ~

13 3 L2J 12 11 2 L3

+~~~ C11~
1
~
p
3 4}s

in ~~~~ —zf
~~~

(x) ,
~

+ g0~~(x) (~~s~~)
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where the i ndex k refers to the k tI
~ l ayer and where f (k) (x) and g (k)(x)

are determined from the boundary and continuity conditions. These

transverse stresses are those found by the method i nvolved in u s ing  the

in-plane stresses in the equations of equilibrium wh i ch are then U

integrated to find the three remaining transverse stress components.

Further consideration w i l l  be l i m i ted to the case of a three layer

laminate arranged with the fiber directions des i gnated by (O°/90°/0°]
. 5

and wi th the laminae having equal thickness of h/3. The following

express i ons are ob tained for f (k)(x) and gk(x) .

f0~ (x) ~1 .~~j_C11
0)A04+ c13

( c2~]÷~~~[c11
0)A 1 - 

2C ~
1
~C ~‘‘13 3t J

h3 
~~~ ~~ 

- h
4 

~
0A ~ ... C18)— 

~11 2 ~~~ 
~~ C11 ~ 

~~ 5 cos

f (2) (X) = f0~ (x) +{

~
-[ (C 11

(2)_C
11
(f ]A0~~~.+ tC (2) 

— c (flic 1
~13 13

+ .~~. [_~~~11
2 — C J1~’~3A 1 

!~~ + 2[C13~
2) — c13

0
~]c 3 ~
j

— 

~~ ~c 
(2) - c ~

1
~]A ‘~ h

k 

tc 11
(2) - c

11
0)1A3 

(!2~.)11 11 2 1  518k

- (19)

I.

f~~~(x) - ~~1(C 11 A0~~~~
+ C  !L1 +~~~

. [-c 11
0

~A 1 ~~13 .2 L

3 (l)A 
~ 

— ~~. c 11
0

~A3 
!jU) cos (!. .) (20)+2 C ~~~13 3 L 11;.C11 2 L2

I.
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where the subscr i pts 1 , 2, and 3 refer to the 0°, 90°, and 00 layers ,

U respectively.

The stress distributions will be displayed for lamina of the

fol lowing properties which are typical of high modulus graphite/epoxy

composi tes

£2 — 25 x 106 psf~ ET — io6 ~~ 
U

GLI — 0.5 x 106 psi; G
~~ 

— 0.2 x 106 ps i (24)

VI.T V,_r O.25

where L and I refer to the properties alone and transverse to the fiber

di rect ions , respectively, and VLT is the Po i sson t s ra ti o meas ur i ng

transverse strain under normal stress parallel to the fibers.

DISCUSS ION

The transverse normal stress and transverse shear stress for the

homogeneous Isotropic plate case are given in Figures 1-3. The

difference in these figures is due to the variation in the ratio of

h/L, i.e. the ratio of thickness to half wave length of the sinusoida l

load. In Figure 1 , for h/I. — 1/4, the normal stresses calculated by

the two different means are compared with the exact solutions . For

th is small va l ue of h/I, the transverse shear stresses calculated by

the two methods are so close to the exact so lut ions as to make them

look identically equa l graph i call y. Clearly the transverse normal

stresses found by the integration of the equations of equilibrium are

far more accurate than those obtained directly from the displacement
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solution through the strain displacement and the stress strain relations.

The results shown in these figures revea l tha t the transverse stresses

found by equ ilibrium equation Integration to be more accurate then those

found directly from the displacement solution , with these results being

under stringent short wave length l oad conditions . As discussed in

Reference [1] the maximum ratio of h/I for which the theory has

reasonable validity is about h/L — 1 and the results shown here

collaborate this conclus i on.

It Is of Interes t to note from Figures 1— 3 that the transverse

stresses obtained directly from the displacement solution violate the

top and bottom traction conditions. An exam i nation of the derivation

in Reference (1] reveals this to be a consistent aspect of the method .

Thus even though the tract i ons enter the theory as boundary conditions ,

this process actually occurs through an equilibrium we i ghting method , 
5

thus the theory does not provide exact satisfact i on of these boundary

cond i tions. -Cons ider however, the al ternate method of obtaining the

transverse stresses from integrating the equilibrium equations

utilizing the in—p lane stresses found directly from the displacement

solu tion . in this case the boundary traction s are automatically

satisfied through the eva l uation of the constants of integration . A

similar situation exists in the case of laminated plates . Transverse

stresses evaluated directl y from the disp lacement solution would in

genera l not be continuous across the interfaces between lamina ,

however the transverse stresses found by the equilibrium method

proposed herein provide continuous stress with exact satisfaction of

top and bottom surface conditions .
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The results for a three layer laminate are shown In Figures 4

and 5 5, for the va l ue of h/I. — 1/4. The exact elasticity solution is

taken from Pagano (6]. It is apparent that the case of the laminate U

provides much more strenuous conditions aga i nst which to test a plate

theory than does homogeneous conditions . Nevertheless , as seen in
U 

these figu res the equilibrium equation method of generating

transverse stresses provides a reasonable approximation to the exact

solut ion .

CONCLUS I ONS

The present high order theory of plate deformation appears to

provide reasonably accurate prediction s of behavior under short wave

length conditions . This conc l us i on is valid for both homogeneous =

plates and for laminates ; also as shown by the results , laminates are

much more demand i ng of high order effect representat i on than are

homogeneous plates . In problems where displacements are the quantity

of prime interes t the present displacement type theory appears to provide

a reasonable and hi gh orde r effect solution . In prob l ems where the

stresses are the quantity sought it has been shown that the present 
U

theory still provides highl y accurate stres s information . It has

been demonstrated that the best method for determining the stresses U

invo l ves determining the in—plane stresses directly from the displacement

solu tion and thence determining the transverse stresses through the

In tegration of the equations of equilibrium , utilizing the in—plane

sol ution therein. This method is of course applicable to a theory

of any order not Just the present high order theory . The success of

_ 
- 
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the method was virtually assured by the fact that it is the only

pdssible procedure for use at the level of the classica l theory

assumptions .

I

U
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FIGURE CAPTIONS

Figure 1. Transverse normal stress distributions for a homogeneous

isotropic plate at h/I — 0.25.

Figure 2. Transverse normal stress distributions for a homogeneous

isotrop ic p late at h/I — 1 .0 .

FIgure 3. Transverse shear stress distributions for a homogeneous

isotropic plate at h/I 1.0.

Figure 4. Transverse norma l stress dis tr i buti ons for a [00, 900 , 0°]

lamina te at h/L 0.25.

Figure 5. Transverse shear stress distributions for a [0°, 90°, 0°]

lam i nate at h/L 0.25. -5
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U Chap ter 4

THREE DIMENSIONAL FAILURE CRITERION

E. N. Wu , R. N. Chris tensen and K. H. Lo
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St rength of Thick Laminates

The strength of thick laminates can be cast in terms of the

characterization of the criticality of three—d i mensional stress states ,

which can l ead to rupture . Due to the complex i ty of this cha racterization ,

the following simplified assumptions are required : 1) all comb i ned

load i ngs are proportiona l and monotonic thus prec l ud i ng the effects of

— fatigue and load i ng path dependency , 2) the thick composite is plana r

laminated thus prec l ud i ng 3-D woven structures . Within these constraints ,

significant flexibility is retained , e.g. the lamination sequence and

ang le can be arbitrarily varied utilizing a single Set of basic data,

or i f basic da ta are avai la b le for severa l generically diff erent laminae ,

thick hybrid composite laminate strengths can also be estimated .

The flexibility of this characterization lies in the inclusion of

three—dimensiona l stresses in the tensor polynomial failure criterion

for the lamina . Since the coefficinets of the tensor pol ynomial

failure criterion obey tensor transformation l aws, compu ta ti ona l  methods

= for predic ting the strength of thick laminae of any layup can be

established .

The principl e steps of this characterization are :

1) Eva l uation of the 3-D failure criterion for a unidirectiona l

lamina ,

2) Establishment of the transformational properties of the strength 
-

S

coeffic i ent s , 5

3) 3—D analysis of thick laminated structure .

These steps are illustrated i n F i gu res la , b , c respective l y. The last

step has already been addressed i n Chapters 1 , 2, and 3. The first and
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second steps will now be examined . In Step 1 (Figure Ia) we seek the

strength response of the lamina (alon~ its principa l directions ) which

can be expressed in terms of the tensor failur e pol ynomial criterion as (I]:

F1
a~ + ~~~~~ + ... — I i ,J — 1 ,2,3,4,5,6 ( I a)

The failure tensors which characterize the strength of the laminate can —

be wr itten in matrix form, while accounting for orthotropy, as

F1 
- 

- F11 F12 F13 0 0 0 
-

F
2 F22 F

23 0 0 0

F F 0 0 0
F. — F.1 — 

33 (lb)1 o F44 0 0

0 F55 0

It is seen from Equation (ib) that the failure tensors associated with

the 3 axis (F3, F13, F23, F33, F44, F55) contro l the strength related

to the stresses assocated with the 3 axis. These coefficients are not

required if the laminate Is thin but must be included if the laminate

is thick. The remaining coefficinets are well known and they may be

measured by a total of six i ndependen t experiments. It appears that

measurement of the failure tensors, assoc iated with the inclusion of the

3 axis requires six additiona l tests. However syn~netry conditions will

be explored to reduce the number of tests.

A unidirectional lamina (oriented as shown in Figure 1(a)) possesses

the syimletry condition that properties associated with the X2 are
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in terchangeable wi th properties associated with the X
3 

axis. Thus , the

- 

following table of syninetry for the strength coefficients can be constructed .

Table I

Tensor Notation Contracted Notation

22 
= 

33 
:2 ~

1122 1133 12 13
F — F  F2222 3333 22 33
F
1313 — F1212 F55 — F66

By vir tue of these symetr i es , we can assess the necessary experiments

required to eva l uate the coefficinets for a 3-D failure criterion .

These experiments can be determined by eva l uat i on of Equation (la)

followin g the procedure outlined by Wu in Reference [2]. By substitution

of diff erent stress states in Equation (la), we can evau la te the

coeffic ients of the strength tensors :

-
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Evaluation of Component State of Stress
of Strength Tensor* ReQuired

_ _ _ _

‘ 
F~ ~ LIII I ________

(1) (2) - 
‘ U

F2, F22, (F3, F33)

X 2 
~~t1Iill~ ~~(3) (4)

~[fl hIIt

x6

F ( F )12’ 13 1

F
23 

(F 32) (6)

~ 0

F44 (7) _____ 

X4

* Bracketed terms , by symetry
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Here, we adopt the same notation as In Reference (23 where

represents the un i axial strength induced by the un i axial stress

and are the biaxial strengths induced by combined stress conditions .

( The strength tensor is computatable from the strengths by soluti on

of Eq. (I). The necessary relations are: for experiments Ne. 1 , 2, 3,

4,5, and 8, 

1 1F. -~~~- - -~-~- 
-

~
no sum
i — I , 2, 3, 4, 5, 6. (2)

F.,. —

for experiments No. 6,

F12 - (1 - F~~1 - F2a2 - F~~~
2 - F22~2

2) 
2
~i~ 2

S For experiment No. 7,

F
23 — (1 — F2~2 - F3~3 

- F22~2
2 

- F33~3
2) 

2 &  
(li)

a2

We note that tests No. (1) through (6) are those required for a

two-dimens i ona l failure criterion ; the procedure for determining

them has been thoroughly described in Reference [2]. In addition , we

uncovered a rather surprising and conven i ent fact that a three-

d imensiona l failure criterion (in 2nd-order form) onl y required two

add i tiona l experiments i.e., tests No. 7 and No. 8. In fact , we note

that experiemnts No. 7 and No. 8 are measuring the strength response of

L 85
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essent ial l y isotropic properties . Thus, a not unreasonable estimate

of these strengths may be arrived at by degrad i ng the corresponding

resin matrix strengths by a suitable factor to reflect the stress

concentration due to the presence of fibers . If such a comprise is

- 

deemed acceptable; no additiona l tests are required to extend a U

2-0 failure criterion to a 3-0 failure criterion ! Such is the

remuneration for the tensor polynomial failure criterion formulation .

I n this p rogram these coefficients are experimentall y measured rather

than es tim ated.

Experimen tal Measurements

The fa i lure cr it er ia out l i ned here are eva luated for a

ultra-high stiffness graph i te epoxy compàs i te-GY 70 manufactured by

Ceianese Corporation with Fiberite 934 Resin. Sampl es for this

program was fabricated by General Dynamics Cooperation , Convair

Divis ion .

The eight characteristic experiments described previously were U

carried out. The sample configurations of these tests are as follows.

Experiment No. 1 (longitudinal tensile test) was performed on

parallel-edged samples with end-tabs of the configuration referred

to as IITR I samp l es recomended by the Air Force Desi gn Guide.

End tabs were not tapered and were full y loaded by wedge grips over

its entire length to eliminate peeling by tensile stress.

Experi ment No. 2 (longitudinal compression) was performed on a

sandwich spec i men . The configuration is shown in Fig. 2a and b.

Th is compression sample is similar to the honeycomb sandwich sample
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suggested in the Air Force Desi gn Guide (MIL STD4O1A) with the

difference that low density rigid foam is used In lieu of the usua l

honeycomb for expediency of sample preparat i on. Test results are

consistent with those produced by the honeycomb sandwich samples.

Experiment No. 3 (Transverse tension) samples were identica l

to experiment Mo. I with the exception that end tabs were not used .

Experiment No. 4 (Transverse compression) samp les were ide nti cal

to those used in experiment no. 2.

Experiment No. 5 (Longitudina l shear) was performed by a beam

bending confi guration as shown in Fig. 3a and 3b. This shear

test was originally suggested by Messmer (3] in photoe lasticfty

experiments and subsequently rediscovered by (.os i pescu (4] to test

shear strength of isotropic metals. The salient features of this

configuration are that:

i) The one dimensiona l nature of the configuration l ends itself

to anal ys i s  which i s acc ura te to the beam theory level.

ii) In beam bend i ng theory , long itudinal shear is proportiona l

to the grad i ent of the bending moment; in this configuration the bend i ng

moment gradient is un i form over the length of the beam and the

magnitude of the moment is zero at the center. Thus if failure is

i nduced to occur at the center , the strength measurement reflects the

pure shear strength . For the purpose of inducing shear failure at

the center and for the purpose of converting the parabolic distribution

of shear stress to un i form shear stress , Losipesu (4] introduced 90°

notches to the sample. Whi le this technique was reported to work

satisfactoril y for metals , it p roved to be un successf u l for
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unidirectiona l iam i na because machining of the 90° notch inevitably

induced cracking. We overcame this difficulty by introduc ing

bond ing flanges to the composite web to form the shape of an I beam.

The flanges (top and bottom) are discontinuous at the center (see

Figure 4); si nce the moment is zero In the center with no norma l stress

due ~o bend i ng , no stress singularity ~s i nduced by the slit. At the

same t ime , shear failure can propagate through the slit. The absence

of singularity is valid to the l evel of the strength of material

analysis but probably not in the theory-of-elasticity level. However,

ver ification was carried out to the extent that literature va l ues on

known compos ites (Scotch-piy-l002) were recovered by this test.

I t appears this test might merit more extensive development under a

d i fferent scope. Suggested stidies are finite elemen t and photo—

elastic analysis and optimization of the flange materia l .

Test No. 6 involved internal pressurization and compression of a

thin-wa iied tube. The stress ratio induced was B — a
1 /a2 — -10.

Experimenta l details are as described in Reference (5).

Test No. 7 was similar to a constrained compress i on test

reported by T. C. Colli ngs [5] and is schematically illustrated in

Fi gure 5. The sample is a 3/k-inch cube cut from a thick lamina . For

the measured Po i sson ra t io , V
23 

— 0.62, the s tress ra ti os are

a2 —l
-0.62

Test No. 8 was performed in the same fixture as in Test No. 5 5

(the longitud i na l shear test), the exception being that in this case the 
- =
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fiber or ientation is perpendicular to the web (See Fi gure 6). These

U 
samples are sliced from a 0.75”-thick laminate with a diamond circular

cutter.

U All of the above experiments were performed on an electro-hyd rau li c

servo-controlled testing machine. Load is used as the feedback cont rol

and the load ing function is constant load i ng rate to failure . Loading

rates for each type of tests were adjusted (by trial) such that starting

from no l oad , the time to fail was approximately 10 minutes . The

experimental results are:

Test Strength (ksi) Range

181.6 (1st Batch) 55.5 - 101
— 1. Longi tudinal Tens i on —

(2nd Batch) 60.9 - 98.6

2. Long itudinal Compression — 82.3 69.3 - 91.2

3. Transverse Tens ion X2 — 5.1 4.2 - 5.6

= 18.6 (1st Batch) 8.1 - 9.0
4. Transverse Compression X~ —

L7 9  (2nd Batch) 7.3 - 8.4

5. Long itudinal Shear — 8. 2 7 .9 - 8.5

~~~ 
92k

6. B i axial St rength 1 , 2 p lane *~

L~2 — -9.2
7. Biaxi al Strength 2, 3 plane r~ 2 — -85.6

) (1st Batch)

a -87.92 (2nd Batch)

~~ 

— 42.3

8. Transverse Shear X4 — 4.5 3.9 - 4 . 8
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Two batches of samp les we re tes ted to assure consis tency of material

and instru mentation reproducibility . Stress—strain relations were

recorded and are shown in Figures 7 to 11. In Figure 7, the individual

stress-strain curves for longitud i na l tension are presented . In

Fi gure 8, these tests are statistically averaged ; the curves shown

are the averaged stress-strain curve and the + Due Standard deviation

of the stress-strain curves ; “X” are the ultimate va l ues for each

in d i v i dua l samp les. In s im i lar forms , Fi gures 9 and 10 depict results

of transverse compression tests. Fi gu res i la and l l b  are respect i v e l y

the stress-strain components in the 2 and 3 directions for biaxial

compression .

Based on these measured strengths the strength tensor is computed

in accordance w it h equati ons 2 , 3 and 4; together with the symetry

cond it ions , we deduced the strength tensor for GY 70/934 to be:

F
1 — 0.157 x IO~~ F11 

a 0.150 x l0~~ 1
F2 — 74.8 x l0~~ F22 — 23.8 x lO~~

F
3 — (74.8 x l0~~) F33 — (23.8 x io~~~)

F4 — (0) ksi F 12 — 0.954 x l0~~ ksi 2

F
5 — 

(0) F 13 — (0.954 x l0~~)

F
6 

a (0) F23 — -0.027

The bracketed va l ues are inferred from symmetry conditions.

Disc ussio n and Concl us i on

With these strength tensor components , we have a full charac ter i za ti on

of the 3-D strength of the GY 70/934 composi te. This 3-0 failure criterion
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may be used to assess the criticality of a three—dimensional state of

stress either computed from 3-dimensiona l analysis or the aforepresented

high-order plate anal ysis. Furthermore we note that biaxial compressive

stress tends to increase the strength of the composite. For example both

the biaxial tests No. 6 and 7 produced strength greater than the uniaxial

strength X 1 and X~ respectively. This is reflected in positiveness of

the coeffi ci ent of strength tensor F12, F13, F23. Physicall y this

suggests that the composite test is probably microflaw sensitive in the

transverse d i rect ion ; app l i cat i on of transverse compression tends to

retard flaw growth and l ead to a strength increase in the long itud i nal

d irection. This may be the reason for the large range in strength

variabil ity measured . Constraints in the program prec l ude further

in—depth experimental measurement. Another effort has been initiated to

check the experimental technique and provide further measurements.

Nevertheless , the methodology and anal ys i s rema i n wel l  founded and may

be applied with confidence.
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FIGURE CAPTIONS

Figure I: Composite Laminates

Fi gure 2: Compression Sample Configuration (Test No. 2 and ~
)

Fi gure 3: Shear Fixture Confi guration (Test No. 5)

Figure 4: Shear Sample Configuration (Test No. 5)

FI gure 5: Biaxial Compression Confi gura tion (Test No. 7)

Fi gure 6: Shear Test Configurat ion (Test No. 8)

Fi gure 7: Individua l Stress-Strain Curves of Long itud i na l Tension
Tests of GY-70/93Zs (I ks i — 0.145 MPa)

Fi gure 8: Averaged Stress-Stra in Curves of Long itudinal Tests of
GY—70/934 (I ksl — 0.145 MPa)

Fi gure 9: Individua l Stress-Strain Curves for Transverse Compression
Tests of GV-70/934 (1 ksi • 0.145 MPa)

Fi gure 10: Average Stress-Strain Curves of Transverse Compression
Tests of GY-70/934 (1 ksl • 0.145 MPa)

Fi gure h a : Ind v i dua l 02 v S C 3 Curves for Biaxial Compression in
2-3 plane for GY-70/931e (1 ksl • 0.145 MPa)

Fi gure lIb : Individua l 
~~ vs t~~ Curves for Biaxial Compression in

2-3 Plane for GY-70/934 (1 ksl • 0.145 tiP.)
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Figure 1. Composite Laminates. 
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Fi gure 2. Compression Sample Configuration (Test No. 2 and 4).
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Figure 7. Individual Stress-Strain Curves of Longitud i na l Tension Tests of
GY-70/934 (1 ksi 0.145 MPa). -
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Figure 9. Individual Stress-Strain Curves for Transverse Compression Tests
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LCOM 1 38S GY7Q193 ’+ 90 DEC (MPA~AVERAGE CURVE . .95 LIM ITS ,AND FAILURE POINTS FOF 3 SPEC I MENS

THE AVERAGE VALUE ANO C0Er~ 1cIENT O~ VARIATION ro~MAX . STR ESS 5.~,’.3E.GI 5.252E-02 ARE A TO .2~t t~ 310E,OI I.5’e~E.00
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Fi gure 10. Average Stress-Strain Curves of Transverse Compression Tests
of GY-70/934 (I ksl — 0.145 MPa).
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